Note
Go to the end to download the full example code.
Quality Metrics Tutorial
After spike sorting, you might want to validate the ‘goodness’ of the sorted units. This can be done using the
qualitymetrics submodule, which computes several quality metrics of the sorted units.
import spikeinterface.core as si
from spikeinterface.metrics import (
compute_snrs,
compute_presence_ratios,
compute_isi_violations,
)
First, let’s generate a simulated recording and sorting
recording, sorting = si.generate_ground_truth_recording()
print(recording)
print(sorting)
GroundTruthRecording (InjectTemplatesRecording): 4 channels - 25.0kHz - 1 segments
250,000 samples - 10.00s - float32 dtype - 3.81 MiB
GroundTruthSorting (NumpySorting): 10 units - 1 segments - 25.0kHz
Create SortingAnalyzer
For quality metrics we need first to create a SortingAnalyzer.
analyzer = si.create_sorting_analyzer(sorting=sorting, recording=recording, format="memory")
print(analyzer)
estimate_sparsity (no parallelization): 0%| | 0/10 [00:00<?, ?it/s]
estimate_sparsity (no parallelization): 100%|██████████| 10/10 [00:00<00:00, 418.83it/s]
SortingAnalyzer: 4 channels - 10 units - 1 segments - memory - sparse - has recording
Loaded 0 extensions
Depending on which metrics we want to compute we will need first to compute some necessary extensions. (if not computed an error message will be raised)
analyzer.compute("random_spikes", method="uniform", max_spikes_per_unit=600, seed=2205)
analyzer.compute("waveforms", ms_before=1.3, ms_after=2.6, n_jobs=2)
analyzer.compute("templates", operators=["average", "median", "std"])
analyzer.compute("noise_levels")
print(analyzer)
compute_waveforms (workers: 2 processes): 0%| | 0/10 [00:00<?, ?it/s]
compute_waveforms (workers: 2 processes): 50%|█████ | 5/10 [00:00<00:00, 49.74it/s]
compute_waveforms (workers: 2 processes): 100%|██████████| 10/10 [00:00<00:00, 80.26it/s]
noise_level (no parallelization): 0%| | 0/20 [00:00<?, ?it/s]
noise_level (no parallelization): 100%|██████████| 20/20 [00:00<00:00, 272.54it/s]
SortingAnalyzer: 4 channels - 10 units - 1 segments - memory - sparse - has recording
Loaded 4 extensions: random_spikes, waveforms, templates, noise_levels
The spikeinterface.qualitymetrics submodule has a set of functions that allow users to compute
metrics in a compact and easy way. To compute a single metric, one can simply run one of the
quality metric functions as shown below. Each function has a variety of adjustable parameters that can be tuned.
presence_ratios = compute_presence_ratios(analyzer)
print(presence_ratios)
isi_violation_ratio, isi_violations_count = compute_isi_violations(analyzer)
print(isi_violation_ratio)
snrs = compute_snrs(analyzer)
print(snrs)
{np.str_('0'): nan, np.str_('1'): nan, np.str_('2'): nan, np.str_('3'): nan, np.str_('4'): nan, np.str_('5'): nan, np.str_('6'): nan, np.str_('7'): nan, np.str_('8'): nan, np.str_('9'): nan}
{np.str_('0'): np.float64(0.0), np.str_('1'): np.float64(0.0), np.str_('2'): np.float64(0.0), np.str_('3'): np.float64(0.0), np.str_('4'): np.float64(0.0), np.str_('5'): np.float64(0.0), np.str_('6'): np.float64(0.0), np.str_('7'): np.float64(0.0), np.str_('8'): np.float64(0.0), np.str_('9'): np.float64(0.0)}
{np.str_('0'): np.float64(25.83801378827219), np.str_('1'): np.float64(19.555919854107906), np.str_('2'): np.float64(13.943703950433207), np.str_('3'): np.float64(43.10769319900704), np.str_('4'): np.float64(24.33971871834926), np.str_('5'): np.float64(17.08276961713479), np.str_('6'): np.float64(5.984988872295748), np.str_('7'): np.float64(22.519068265389812), np.str_('8'): np.float64(13.846240555575847), np.str_('9'): np.float64(21.1011300531286)}
To compute more than one metric at once, we can use the SortingAnalyzer.compute("quality_metrics")
function and indicate which metrics we want to compute. Then we can retrieve the results using the get_data()
method as a pandas.DataFrame.
metrics_ext = analyzer.compute(
"quality_metrics",
metric_names=["presence_ratio", "snr", "amplitude_cutoff"],
metric_params={
"presence_ratio": {"bin_duration_s": 2.0},
}
)
metrics = metrics_ext.get_data()
print(metrics)
presence_ratio snr
0 1.0 25.838014
1 1.0 19.555920
2 1.0 13.943704
3 1.0 43.107693
4 1.0 24.339719
5 1.0 17.082770
6 1.0 5.984989
7 1.0 22.519068
8 1.0 13.846241
9 1.0 21.101130
Some metrics are based on the principal component scores, so the extension must be computed before. For instance:
analyzer.compute("principal_components", n_components=3, mode="by_channel_global", whiten=True)
metrics_ext = analyzer.compute(
"quality_metrics",
metric_names=[
"mahalanobis",
"d_prime",
],
)
metrics = metrics_ext.get_data()
print(metrics)
Fitting PCA: 0%| | 0/10 [00:00<?, ?it/s]
Fitting PCA: 100%|██████████| 10/10 [00:00<00:00, 189.57it/s]
Projecting waveforms: 0%| | 0/10 [00:00<?, ?it/s]
Projecting waveforms: 100%|██████████| 10/10 [00:00<00:00, 2416.07it/s]
isolation_distance l_ratio d_prime snr presence_ratio
0 824.066487 1.606902e-17 11.735882 25.838014 1.0
1 42.675790 9.380239e-03 2.826587 19.555920 1.0
2 91.312185 5.309548e-07 4.070065 13.943704 1.0
3 1141.004760 1.511148e-10 10.151726 43.107693 1.0
4 133.573906 2.592162e-05 4.421751 24.339719 1.0
5 40.870338 3.724572e-03 1.972816 17.082770 1.0
6 46.060507 1.378295e-01 3.044455 5.984989 1.0
7 79.077168 1.280450e-03 2.868886 22.519068 1.0
8 15.857721 4.136081e-01 0.914812 13.846241 1.0
9 49.301625 1.632594e-04 3.562738 21.101130 1.0
Total running time of the script: (0 minutes 0.381 seconds)